Université Côte d'azur

ECUE Building recommender systems

Code de l'ECUE : SMEMI315

Ce cours appartient à UE Métiers 1 MSS (3 ECTS) qui contient 4 ECUE
EUR SPECTRUM
Informatique
Campus Valrose
Master 2
Semestre impair
Anglais

PRESENTATION

A recommender system (RS) can help to influence your customers’ behaviour directly but entertainingly. In this course, we will build RS’s using different approaches: content-based, collaborative filtering, context-aware, or a hybrid one. We will learn about the theory behind diverse mathematical models of an RS task: matrix and tensor decompositions, associative rules, neighbourhood methods, learning to rank, and metric learning. For the practical part, we will employ classical machine learning (such as scikit-learn), deep learning (e.g. pytorch), and a slew of specialised packages (implicit and lightfm amongs them). During the lectures, we will talk not only about theorems but also about applications of RS’s making the clients of companies and non-profit organisations happier. No prior knowledge of the subject is necessary. Python programming experience is mandatory. Statistical learning fundamentals will be nice to have.

Responsable(s) du cours

Boris Shminke

Présentiel

  • 24h de cours magistral
  • 12h de CM
  • 12h de TD

PREREQUIS

Avant le début du cours, je dois ...
  • have at least some Python programming experience

OBJECTIFS

A la fin de ce cours, je devrais être capable de...
  • design, build and evaluate a recommender system suitable for a particular dataset

CONTENU

Accéder au Syllabus complet (Authentification requise)
Important
Ce syllabus n’a aucune valeur contractuelle. Son contenu est susceptible d’évoluer en cours d’année : soyez attentifs aux dernières modifications.